33 research outputs found

    Similarity and structured representation in human and nonhuman apes

    Get PDF
    How we judge the similarity between objects in the world is connected ultimately to how we represent those objects. It has been argued extensively that object representations in humans are ā€˜structuredā€™ in nature, meaning that both individual features and the relations between them can influence similarity. In contrast, popular models within comparative psychology assume that nonhuman species appreciate only surface-level, featural similarities. By applying psychological models of structural and featural similarity (from conjunctive feature models to Tversky's contrast model) to visual similarity judgements from adult humans, chimpanzees, and gorillas, we demonstrate a cross-species sensitivity to complex structural information, particularly for stimuli that combine colour and shape. These results shed new light on the representational complexity of nonhuman apes, and the fundamental limits of featural coding in explaining object representation and similarity, which emerge strikingly across both human and nonhuman species

    Transformation and representation in similarity.

    Get PDF
    Similarity, being a psychological notion, involves the comparison of finite object representations. The specific nature and complexity of these representations is a matter of fierce theoretical debate traditionally, similarity research was dominated by the spatial and featural account. In the spatial account, similarity is determined by the distance between objects in a psychological space. Alternatively, the featural account proposes that similarity is determined by matching objects' features. Despite the empirical success of these accounts, the object representations they posit are regarded too simple and specific to deal with more complex objects. Therefore, two structural accounts have been developed: structural alignment (SA) and Representational Distortion (RD). This aim of this thesis was to further establish one particular structural account RD as a general framework for understanding the similarity between object representations. Specifically, RD measures similarity by the complexity of the transformation that "distorts" one representation into the other. This RD approach is investigated in detail by testing a detailed set of transformational predictions (coding scheme) within a rich stimulus domain. These predictions are tested through experiments and modelling that utilise both a) explicit measures (ratings, forced-choice), and, for the first time, b) implicit measures (reaction time, same-different errors & spontaneous categorisation). Moreover, RD is compared empirically with both traditional and alignment models of similarity. Overall, the results suggest that similarity can be best understood by transformational relationships in a number of contexts. The performance of RD in both explicit and implicit measures is made more compelling by the fact that rival accounts fundamentally struggle to describe the sorts of relationships that are easily captured by RD. Finally, it is emphasised that RD is actually compatible with supposedly rival approaches and can incorporate theoretically these accounts, both traditional and structural, under one general framework

    Structural connections support emotional connections: uncinate fasciculus microstructure is related to the ability to decode facial emotion expressions

    Get PDF
    The Uncinate Fasciculus (UF) is an association fibre tract connecting regions in the frontal and anterior temporal lobes. UF disruption is seen in several disorders associated with impaired social behaviour, but its functional role is unclear. Here we set out to test the hypothesis that the UF is important for facial expression processing, an ability fundamental to adaptive social behaviour. In two separate experiments in healthy adults, we used high-angular resolution diffusion-weighted imaging (HARDI) and constrained spherical deconvolution (CSD) tractography to virtually dissect the UF, plus a control tract (the corticospinal tract (CST)), and quantify, via tissue fractional anisotropy (FAT), individual differences in tract microstructure. In Experiment 1, participants completed the Reading the Mind in the Eyes Task (RMET), a well-validated assay of facial expression decoding. In Experiment 2, a different set of participants completed the RMET, plus an odd-emotion-out task of facial emotion discrimination. In both experiments, participants also completed a control odd-identity-out facial identity discrimination task. In Experiment 1, FAT of the right-, but not the left-hemisphere, UF was significantly correlated with performance on the RMET task, specifically for emotional, but not neutral expressions. UF FAT was not significantly correlated with facial identity discrimination performance. In Experiment 2, FA of the right-, but not left-hemisphere, UF was again significantly correlated with performance on emotional items from the RMET, together with performance on the facial emotion discrimination task. Again, no significant association was found between UF FAT and facial identity discrimination performance. Our findings highlight the contribution of right-hemisphere UF microstructure to inter-individual variability in the ability to decode facial emotion expressions, and may explain why disruption of this pathway affects social behaviour

    Polygenic risk for Alzheimer's disease shapes hippocampal scene-selectivity

    Get PDF
    Preclinical models of Alzheimerā€™s disease (AD) suggest APOE modulates brain function in structures vulnerable to AD pathophysiology. However, genome-wide association studies now demonstrate that AD risk is shaped by a broader polygenic architecture, estimated via polygenic risk scoring (AD-PRS). Despite this breakthrough, the effect of AD-PRS on brain function in young individuals remains unknown. In a large sample (Nā€‰=ā€‰608) of young, asymptomatic individuals, we measure the impact of both (i) APOE and (ii) AD-PRS on a vulnerable cortico-limbic scene-processing network heavily implicated in AD pathophysiology. Integrity of this network, which includes the hippocampus (HC), is fundamental for maintaining cognitive function during ageing. We show that AD-PRS, not APOE, selectively influences activity within the HC in response to scenes, while other perceptual nodes remained intact. This work highlights the impact of polygenic contributions to brain function beyond APOE, which could aid potential therapeutic/interventional strategies in the detection and prevention of AD

    Distinct contributions of the fornix and inferior longitudinal fasciculus to episodic and semantic autobiographical memory

    Get PDF
    Autobiographical memory (AM) is multifaceted, incorporating the vivid retrieval of contextual detail (episodic AM), together with semantic knowledge that infuses meaning and coherence into past events (semantic AM). While neuropsychological evidence highlights a role for the hippocampus and anterior temporal lobe (ATL) in episodic and semantic AM, respectively, it is unclear whether these constitute dissociable large-scale AM networks. We used high angular resolution diffusion-weighted imaging and constrained spherical deconvolution-based tractography to assess white matter microstructure in 27 healthy young adult participants who were asked to recall past experiences using word cues. Inter-individual variation in the microstructure of the fornix (the main hippocampal input/output pathway) related to the amount of episodic, but not semantic, detail in AMs e independent of memory age. Conversely, microstructure of the inferior longitudinal fasciculus, linking occipitotemporal regions with ATL, correlated with semantic, but not episodic, AMs. Further, these significant correlations remained when controlling for hippocampal and ATL grey matter volume, respectively. This striking correlational double dissociation supports the view that distinct, large-scale distributed brain circuits underpin context and concepts in AM

    Ultra-high-field fMRI reveals a role for the subiculum in scene perceptual discrimination

    Get PDF
    Recent ā€œrepresentationalā€ accounts suggest a key role for the hippocampus in complex scene perception. Due to limitations in scanner field strength, however, the functional neuroanatomy of hippocampal-dependent scene perception is unknown. Here, we applied 7 T high-resolution functional magnetic resonance imaging (fMRI) alongside a perceptual oddity task, modified from nonhuman primate studies. This task requires subjects to discriminate highly similar scenes, faces, or objects from multiple viewpoints, and has revealed selective impairments during scene discrimination following hippocampal lesions. Region-of-interest analyses identified a preferential response in the subiculum subfield of the hippocampus during scene, but not face or object, discriminations. Notably, this effect was in the anteromedial subiculum and was not modulated by whether scenes were subsequently remembered or forgotten. These results highlight the value of ultra-high-field fMRI in generating more refined, anatomically informed, functional accounts of hippocampal contributions to cognition, and a unique role for the human subiculum in discrimination of complex scenes from different viewpoints

    Dissociable roles of the inferior longitudinal fasciculus and fornix in face and place perception

    Get PDF
    We tested a novel hypothesis, generated from representational accounts of medial temporal lobe (MTL) function, that the major white matter tracts converging on perirhinal cortex (PrC) and hippocampus (HC) would be differentially involved in face and scene perception, respectively. Diffusion tensor imaging was applied in healthy participants alongside an odd-one-out paradigm sensitive to PrC and HC lesions in animals and humans. Microstructure of inferior longitudinal fasciculus (ILF, connecting occipital and ventro-anterior temporal lobe, including PrC) and fornix (the main HC input/output pathway) correlated with accuracy on odd-one-out judgements involving faces and scenes, respectively. Similarly, blood oxygen level-dependent (BOLD) response in PrC and HC, elicited during oddity judgements, was correlated with face and scene oddity performance, respectively. We also observed associations between ILF and fornix microstructure and category-selective BOLD response in PrC and HC, respectively. These striking three-way associations highlight functionally dissociable, structurally instantiated MTL neurocognitive networks for complex face and scene perception

    Hippocampal MRS and subfield volumetry at 7T detects dysfunction not specific to seizure focus

    Get PDF
    Ultra high-field 7T MRI offers sensitivity to localize hippocampal pathology in temporal lobe epilepsy (TLE), but has rarely been evaluated in patients with normal-appearing clinical MRI. We applied multimodal 7T MRI to assess if focal subfield atrophy and deviations in brain metabolites characterize epileptic hippocampi. Twelve pre-surgical TLE patients (7 MRI-negative) and age-matched healthy volunteers were scanned at 7T. Hippocampal subfields were manually segmented from 600Ī¼m isotropic resolution susceptibility-weighted images. Hippocampal metabolite spectra were acquired to determine absolute concentrations of glutamate, glutamine, myo-inositol, NAA, creatine and choline. We performed case-controls analyses, using permutation testing, to identify abnormalities in hippocampal imaging measures in individual patients, for evaluation against clinical evidence of seizure lateralisation and neuropsychological memory test scores. Volume analyses identified hippocampal subfield atrophy in 9/12 patients (75%), commonly affecting CA3. 7/8 patients had altered metabolite concentrations, most showing reduced glutamine levels (62.5%). However, neither volume nor metabolite deviations consistently lateralized the epileptogenic hippocampus. Rather, lower subiculum volumes and glutamine concentrations correlated with impaired verbal memory performance. Hippocampal subfield and metabolic abnormalities detected at 7T appear to reflect pathophysiological processes beyond epileptogenesis. Despite limited diagnostic contributions, these markers show promise to help elucidate mnemonic processing in TLE

    Tract-specific differences in white matter microstructure between young adult APOE Īµ4 carriers and non-carriers: A replication and extension study

    Get PDF
    The parahippocampal cingulum bundle (PHCB) interconnects regions known to be vulnerable to early Alzheimer's disease (AD) pathology, including posteromedial cortex and medial temporal lobe. While AD-related pathology has been robustly associated with alterations in PHCB microstructure, specifically lower fractional anisotropy (FA) and higher mean diffusivity (MD), emerging evidence indicates that the reverse pattern is evident in younger adults at increased risk of AD. In one such study, Hodgetts et al. (2019) reported that healthy young adult carriers of the apolipoprotein-E (APOE) Īµ4 allele ā€“ the strongest common genetic risk factor for AD ā€“ showed higher FA and lower MD in the PHCB but not the inferior longitudinal fasciculus (ILF). These results are consistent with proposals claiming that heightened neural activity and intrinsic connectivity play a significant role in increasing posteromedial cortex vulnerability to amyloid-Ī² and tau spread beyond the medial temporal lobe. Given the implications for understanding AD risk, here we sought to replicate Hodgetts et al.ā€˜s finding in a larger sample (N = 128; 40 APOE Īµ4 carriers, 88 APOE Īµ4 non-carriers) of young adults (age range = 19ā€“33). Extending this work, we also conducted an exploratory analysis using a more advanced measure of white matter microstructure: hindrance modulated orientational anisotropy (HMOA). Contrary to the original study, we did not observe higher FA or lower MD in the PHCB of APOE Īµ4 carriers relative to non-carriers. Bayes factors (BFs) further revealed moderate-to-strong evidence in support of these null findings. In addition, we observed no APOE Īµ4-related differences in PHCB HMOA. Our findings indicate that young adult APOE Īµ4 carriers and non-carriers do not differ in PHCB microstructure, casting some doubt on the notion that early-life variation in PHCB tract microstructure might enhance vulnerability to amyloid-Ī² accumulation and/or tau spread
    corecore